Pump-probe detection of laser-induced microbubble formation in retinal pigment epithelium cells.
نویسندگان
چکیده
Microsecond laser pulses are currently being investigated in a new ophthalmic procedure for treatment of disorders associated with the retinal pigment epithelium (RPE). The precise mechanism for microsecond laser-induced RPE damage, however, has not been determined. We have previously shown that short pulse laser irradiation in the nanosecond to picosecond time domain causes transient microbubble formation around melanin granules in pigmented cells. Nanosecond time-resolved microscopy was previously used to visualize the intracellular cavitation dynamics. However, this technique is difficult to use with microsecond laser exposures, especially when multiple laser pulses are applied in a rapid sequence as in the clinical setting. Here we describe a simple pump-probe method for detecting transient light scattering signal from individual RPE cells when they are irradiated with nanosecond and microsecond laser pulses. For single 12 ns pulses the threshold for bubble detection was the same as the ED(50) threshold for cell death. For 6 micros pulse duration the threshold for bubble detection was about 10% higher than the threshold for cell death. With repetitive pulse trains at 500 Hz the ED(50) decreased about 25% for 10 and 100 pulses. Cells die when a single bubble was detected in a multiple pulse sequence.
منابع مشابه
Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space
Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...
متن کاملUltrashort Laser Retinal Damage Threshold Mechanisms
Ultrashort laser pulses have been adapted for use in a variety of applications from micromachining of dielectrics to atmospheric spectrochemistry and multiphoton microscopy. These lasers emit almost exclusively in the retinal hazard wavelength regime, making them potential sources for accidental vision loss, but also candidates for biomedical applications where precise alteration of tissues is ...
متن کاملBoiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses.
Selective tissue damage on the cellular level can be achieved by microbubble formation around laser-heated intracellular pigments. To acquire a more detailed understanding of the laser tissue interaction in the highly pigmented retinal pigment epithelium (RPE), we irradiate aqueous suspensions of absorbing microparticles by short pulsed laser irradiation (12 ns, 240 ns, and 1.8 micros). Porcine...
متن کاملHistochemical study of retinal photoreceptors development during pre- and postnatal period and their association with retinal pigment epithelium
Objective(s):The aim of this study was to evaluate distribution and changes of glycoconjugates of retinal photoreceptors during both pre- and postnatal development. Materials and Methods: Tissue sections from days 15 to 20 of Wistar rat embryos and 1 to 12 postnatal days of rat newborns including developing eye were prepared for lectinhistochemistry technique. Horseradish peroxidase (HRP)-label...
متن کاملMonitoring Intracellular Cavitation During Selective Laser Targeting of the Retinal
Selective destruction of the retinal pigment epithelium (RPE) has important applications in the treatment of a range of macular diseases such as diabetic retinopathy, diabetic macular edema or central serous retinopathy. Laser photocoagulation is the established therapeutic modality for treating these disorders. However, heat diffusion during the long exposure times results in an extended zone ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
دوره 9 2 شماره
صفحات -
تاریخ انتشار 2004